If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+49j=0
a = 1; b = 49; c = 0;
Δ = b2-4ac
Δ = 492-4·1·0
Δ = 2401
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2401}=49$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(49)-49}{2*1}=\frac{-98}{2} =-49 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(49)+49}{2*1}=\frac{0}{2} =0 $
| x/6-9=12 | | 5c/7=2c/3+7 | | 33=-4a+36 | | 6x^2+2x−9=0 | | 11x=-23 | | -v+135=245 | | 9=8d+1 | | 5x–4=4x+4 | | –6x+4=–2 | | a=(31.4)(7) | | 19=-c+44 | | -4=6v+2(v+2) | | 2(n+3)=32 | | 6n+3=3n+4 | | 14z^2+13z+3=0 | | 8x/5+12=-4 | | 4x-4(x+3)=3x+25 | | c*c=5c | | -8=7+x/5 | | 5^x+4=125 | | 1.1x+8=x | | x+5+8=5x-4-4x | | 72.80=1.3c | | x/7=((x+20)/2)/7 | | y=1.9+60 | | 10t-22=-5(-2t=3) | | 14.10=-7.1p+21.2 | | 30+3y=48 | | –5b+24=–1 | | 14z^2+3=0 | | 13=-2c+93 | | 20+3y=48 |